
It’s Time to Replace TCP in the Datacenter

John Ousterhout
Stanford University

January 18, 2023

This position paper has been updated since its original publication in October of 2022 in order to correct errors and add
clarification. Updates are in italics; none of the original text has been modified. The paper has triggered discussion and dissent;
for pointers to comments on the paper, see the Homa Wiki: https: // homa-transport. atlassian. net/ wiki/ spaces/
HOMA/ overview# replaceTcp .

Abstract

In spite of its long and successful history, TCP is a poor trans-
port protocol for modern datacenters. Every significant el-
ement of TCP, from its stream orientation to its expectation
of in-order packet delivery, is wrong for the datacenter. It
is time to recognize that TCP’s problems are too fundamen-
tal and interrelated to be fixed; the only way to harness the
full performance potential of modern networks is to introduce
a new transport protocol into the datacenter. Homa demon-
strates that it is possible to create a transport protocol that
avoids all of TCP’s problems. Although Homa is not API-
compatible with TCP, it should be possible to bring it into
widespread usage by integrating it with RPC frameworks.

1 Introduction
The TCP transport protocol [9] has proven to be phenome-
nally successful and adaptable. At the time of TCP’s design
in the late 1970’s, there were only about 100 hosts attached
to the existing ARPANET, and network links had speeds of
tens of kilobits/second. Over the decades since then, the In-
ternet has grown to billions of hosts and link speeds of 100
Gbit/second or more are commonplace, yet TCP continues to
serve as the workhorse transport protocol for almost all ap-
plications. It is an extraordinary engineering achievement to
have designed a mechanism that could survive such radical
changes in underlying technology.

However, datacenter computing creates unprecedented
challenges for TCP. The datacenter environment, with mil-
lions of cores in close proximity and individual applications
harnessing thousands of machines that interact on microsec-
ond timescales, could not have been envisioned by the de-
signers of TCP, and TCP does not perform well in this envi-
ronment. TCP is still the protocol of choice for most datacen-
ter applications, but it introduces overheads on many levels,
which limit application-level performance. For example, it is
well-known that TCP suffers from high tail latency for short
messages under mixed workloads [2]. TCP is a major contrib-
utor to the “datacenter tax” [3, 12], a collection of low-level
overheads that consume a significant fraction of all processor
cycles in datacenters.

This position paper argues that TCP’s challenges in the dat-
acenter are insurmountable. Section 3 discusses each of the
major design decisions in TCP and demonstrates that every
one of them is wrong for the datacenter, with significant neg-
ative consequences. Some of these problems have been dis-
cussed in the past, but it is instructive to see them all together
in one place. TCP’s problems impact systems at multiple lev-
els, including the network, kernel software, and applications.
One example is load balancing, which is essential in datacen-
ters in order to process high loads concurrently. Load bal-
ancing did not exist at the time TCP was designed, and TCP
interferes with load balancing both in the network and in soft-
ware.

Section 4 argues that TCP cannot be fixed in an evolution-
ary fashion; there are too many problems and too many in-
terlocking design decisions. Instead, we must find a way to
introduce a radically different transport protocol into the dat-
acenter. Section 5 discusses what a good transport protocol
for datacenters should look like, using Homa [19, 21] as an
example. Homa was designed in a clean-slate fashion to meet
the needs of datacenter computing, and virtually every one of
its major design decisions was made differently than for TCP.
As a result, some problems, such as congestion in the network
core fabric, are eliminated entirely. Other problems, such as
congestion control and load balancing, become much easier
to address. Homa demonstrates that it is possible to solve all
of TCP’s problems.

Complete replacement of TCP is unlikely anytime soon,
due to its deeply entrenched status, but TCP can be displaced
for many applications by integrating Homa into a small num-
ber of existing RPC frameworks such as gRPC [6]. With
this approach, Homa’s incompatible API will be visible only
to framework developers and applications should be able to
switch to Homa relatively easily.

2 Requirements
Before discussing the problems with TCP, let us first review
the challenges that must be addressed by any transport proto-
col for datacenters.
Reliable delivery. The protocol must deliver data reliably
from one host to another, in spite of transient failures in the

1

ar
X

iv
:2

21
0.

00
71

4v
2

 [
cs

.N
I]

 1
9

Ja
n

20
23

https://homa-transport.atlassian.net/wiki/spaces/HOMA/overview#replaceTcp
https://homa-transport.atlassian.net/wiki/spaces/HOMA/overview#replaceTcp

network.
Low latency. Modern networking hardware enables round-
trip times of a few microseconds for short messages. The
transport protocol must not add significantly to this latency,
so that applications experience latencies close to the hardware
limit. The transport protocol must also support low latency at
the tail, even under relatively high network loads with a mix
of traffic. Tail latency is particularly challenging for trans-
port protocols; nonetheless, it should be possible to achieve
tail latencies for short messages within a factor of 2–3x of the
best-case latency [19].
High throughput. The transport protocol must support high
throughput in two different ways. Traditionally, the term
“throughput” has referred to data throughput: delivering large
amounts of data in a single message or stream. This kind of
throughput is still important. In addition, datacenter appli-
cations require high message throughput: the ability to send
large numbers of small messages quickly for communication
patterns such as broadcast and shuffle [15]. Message through-
put has historically not received much attention, but it is es-
sential in datacenters.

In order to meet the above requirements, the transport pro-
tocol must also deal with the following problems:
Congestion control. In order to provide low latency, the
transport protocol must limit the buildup of packets in net-
work queues. Packet queuing can potentially occur both at
the edge (the links connecting hosts to top-of-rack switches)
and in the network core; each of these forms of congestion
creates distinct problems.
Efficient load balancing across server cores. For more than
a decade, network speeds have been increasing rapidly while
processor clock rates have remained nearly constant. Thus it
is no longer possible for a single core to keep up with a single
network link; both incoming and outgoing load must be dis-
tributed across multiple cores. This is true at multiple levels.
At the application level, high-throughput services must run
on many cores and divide their work among the cores. At the
transport layer, a single core cannot keep up with a high speed
link, especially with short messages. Load balancing impacts
transport protocols in two ways. First, it can introduce over-
heads (e.g. the use of multiple cores causes additional cache
misses for coherence). Second, load balancing can lead to hot
spots, where load is unevenly distributed across cores; this is a
form of congestion at the software level. Load balancing over-
heads are now one of the primary sources of tail latency [21],
and they are impacted by the design of the transport protocol.
NIC offload. There is increasing evidence that software-
based transport protocols no longer make sense; they simply
cannot provide high performance at an acceptable cost. For
example:

• The best software protocol implementations have end-
to-end latency more than 3x as high as implementations
where applications communicate directly with the NIC
via kernel bypass.

• Software implementations give up a factor of 5–10x
in small message throughput, compared with NIC-
offloaded implementations.

• Driving a 100 Gbps network at 80% utilization in both
directions consumes 10–20 cores just in the networking
stack [16, 21]. This is not a cost-effective use of re-
sources.

Thus, in the future, transport protocols will need to move
to special-purpose NIC hardware. The transport protocol
must not have features that preclude hardware implementa-
tion. Note that NIC-based transports will not eliminate soft-
ware load balancing as an issue: even if the transport is in
hardware, application software will still be spread across mul-
tiple cores.

3 Everything about TCP is wrong
This section discusses five key properties of TCP, which cover
almost all of its design:

• Stream orientation
• Connection orientation
• Bandwidth sharing (“fair” scheduling)
• Sender-driven congestion control
• In-order packet delivery

Each of these properties represents the wrong decision for a
datacenter transport, and each of these decisions has serious
negative consequences.

3.1 Stream orientation
The data model for TCP is a stream of bytes. However, this is
not the right data model for most datacenter applications. Dat-
acenter applications typically exchange discrete messages to
implement remote procedure calls. When messages are serial-
ized in a TCP stream, TCP has no knowledge about message
boundaries. This means that when an application reads from
a stream, there is no guarantee that it will receive a complete
message; it could receive less than a full message, or parts of
several messages. TCP-based applications must mark mes-
sage boundaries when they serialize messages (e.g., by pre-
fixing each message with its length), and they must use this
information to reassemble messages on receipt. This intro-
duces extra complexity and overheads, such as maintaining
state for partially-received messages.

The streaming model is disastrous for software load balanc-
ing. Consider an application that uses a collection of threads
to serve requests arriving across a collection of streams. Ide-
ally, all of the threads would wait for incoming messages
on any of the streams, with messages distributed across the
threads. However, with a byte stream model there is no guar-
antee that a read operation returns an entire message. If mul-
tiple threads both read from a stream, it is possible that parts
of a single message might be received by different threads. In
principle it might be possible for the threads to coordinate and
reassemble the entire message in one of the threads, but this
is too expensive to be practical.

Instead, TCP applications must use one of two inferior
forms of load balancing, in which each stream is owned by a

2

single thread. The first approach, used by memcached [17], is
to divide a collection of streams statically among the threads,
where each thread handles all of the requests arriving on its
streams. This approach is prone to hot spots, where one
thread receives a disproportionate share of incoming requests.
The second approach, used in RAMCloud [22], dedicates one
thread to read all incoming messages from all streams and
then dispatch messages to other threads for service. This al-
lows much better load balancing across worker threads, but
the dispatcher thread becomes a throughput bottleneck. Fur-
thermore, the need for each request to pass through two sepa-
rate threads adds significant software overhead and increases
latency. Thus, the dispatcher thread approach is effective only
if request service times are relatively long.

The fundamental problem with streaming is that the units
in which data is received (ranges of bytes) do not correspond
to dispatchable units of work (messages). There is no point
in waking up a thread to receive part of a message; it will not
be able to process the message until it receives the entire mes-
sage. And, if a thread receives multiple messages in a single
read operation, it can only process one of them at a time; it
would be better for each message to be dispatched to a differ-
ent thread so the messages can be processed concurrently.

Streaming’s negative impact on load balancing will carry
over into a future world where transport processing is of-
floaded to the NIC. In this world, the NIC should perform load
balancing, dispatching incoming requests across a collection
of application threads via kernel bypass. However, this will
not be possible, since information about message boundaries
is application-specific and unknown to the transport layer. Ap-
plications will still have to use one of the approaches de-
scribed above, each of which impacts latency and/or through-
put.

Streaming has an additional impact on tail latency because
it induces head-of-line blocking. Messages sent on a single
stream must be received in order; this means that a short
message can be delayed behind a long message in the same
stream. We observed this phenomenon in RAMCloud, where
small time-sensitive replication requests from one server to
another could be delayed by long background requests for log
compaction, resulting in a 50x increase in write latency [22].

Finally, the reliability guarantees provided by streaming are
not the right ones for applications. Applications want round
trip guarantees. A client application wants an assurance that
its request will be delivered and processed, and that it will re-
ceive a response; if any of these fails, the client would like
an error notification. However, a stream guarantees only best-
effort delivery of data in one direction. The client will re-
ceive no notification if the server does not send a response,
and under some conditions there will be no notification if the
server machine crashes. As a result, clients must implement
their own end-to-end timeout mechanisms, even though TCP
already has timers of its own. These mechanisms introduce
additional overheads.

3.2 Connection orientation
TCP requires long-lived connection state for each peer that
an application communicates with. Connections are unde-
sirable in datacenter environments because applications can
have hundreds or thousands of them, resulting in high over-
heads in space and/or time. For example, the Linux kernel
keeps about 2000 bytes of state for each TCP socket, exclud-
ing packet buffers; additional state is required at application
level.

Facebook found the memory demands for a separate con-
nection between each application thread and each server “pro-
hibitively expensive” [20]. To reduce these overheads, ap-
plication threads communicate through a collection of proxy
threads that manage connections to all the servers. This al-
lows a single connection for each server to be shared across
all the application threads on that host, but it adds overhead
for communicating through the proxies. To reduce the proxy
overheads, Facebook uses UDP instead of TCP for requests
that can tolerate UDP’s unreliability, but this sacrifices con-
gestion control.

The overheads for connection state are also problematic
when offloading the transport to the NIC, due to limited re-
sources on the NIC chip. This problem is well known in the
Infiniband community [5, 10, 11]. For many years, RDMA
NICs could cache the state for only a few hundred connec-
tions; if the number of active connections exceeded the cache
size, information had to be shuffled between host memory and
the NIC, with a considerable loss in performance.

Another problem with connections is that they require a
setup phase before any data can be transmitted. In TCP the
setup phase has a nontrivial cost, since it requires an addi-
tional round-trip between the hosts. Traditionally, connec-
tions have been long-lived, so the setup cost can be amortized
across a large number of requests. However, in new serverless
environments applications have very short lifetimes, so it is
harder to amortize the cost of connection setup.

It seems to be an article of faith in the networking commu-
nity that connections are required in order to achieve desirable
properties such as reliable delivery and congestion control, but
connections carry a high cost and Section 5 will show that it
is possible to achieve these properties without connections.

3.3 Bandwidth sharing
In TCP, when a host’s link is overloaded (either for incoming
or outgoing traffic), TCP attempts to share the available band-
width equally among the active connections. This approach is
also referred to as “fair scheduling”.

Unfortunately, scheduling disciplines like this are well
known to perform poorly under load. When receiving sev-
eral large messages, bandwidth sharing causes all of them to
finish slowly. Run-to-completion approaches such as SRPT
(Shortest Remaining Processing Time) provide better over-
all response time because they dedicate all of the available
resources to a single task at a time, ensuring that it finishes
quickly. It is difficult implement run-to-completion with TCP

3

60 376 561 976 49.4K 1.0M
Message Length (bytes)

1

10

100

1000
P9

9
Sl

ow
do

wn
Workload W4 (80% network load)

TCP P99
DCTCP P99
Homa P99

Figure 1: 99th percentile slowdown as a function of message length
for Linux kernel implementations of TCP, DCTCP, and Homa, running
on a 40-node CloudLab cluster with 25 Gbps network links running at
80% average utilization (see [21] for details). The workload is based
on a message size distribution measured on a Hadoop cluster at Face-
book. Slowdown is the round-trip trip time for a message on a loaded
cluster, divided by the time for Homa messages of the same length in an
unloaded system.

because TCP has no information about message boundaries;
thus, it does not know when a task is “complete”.

Furthermore, in spite of the name “fair scheduling”, TCP’s
approach discriminates heavily against short messages. Fig-
ure 1 shows how round-trip latencies for messages of different
sizes slow down when running on a heavily loaded network,
compared to messages of the same size on an unloaded net-
work. With TCP, short messages suffer a slowdown almost
10x worse than the longest messages. DCTCP reduces the gap
somewhat, but short messages still suffer 3x worse treatment
than long ones. Short message latency is critical in datacenter
environments, so this discrimination is problematic.

3.4 Sender-driven congestion control
TCP drives congestion control from senders, which volun-
tarily slow their rate of packet transmission when they de-
tect congestion. Senders have no first-hand knowledge of
congestion, which can happen either in the core fabric or
at edge links between top-of-rack switches and receivers, so
they rely on congestion signals related to buffer occupancy.
In the worst case, switch queues overflow and packets are
dropped, leading to timeouts. More commonly, switches gen-
erate ECN notifications when queue lengths reach a certain
threshold [25], or senders detect increases in round-trip times
due to queueing [18, 13]; some newer approaches use pro-
grammable switches to generate more precise information
such as exact queue lengths [14, 1]. Senders then use this
information to back off on packet transmission.

Congestion control in TCP is hobbled by two limitations.
First, congestion can only be detected when there is buffer
occupancy; this virtually guarantees some packet queueing
when the network is loaded. Second, TCP does not take ad-
vantage of the priority queues in modern network switches.
Thus, all packets are treated equally and queues generated by
long messages (where throughput matters more than latency)
will cause delays for short messages.

These limitations lead to a “pick your poison” dilemma
where it is difficult to simultaneously optimize both latency
and throughput. The only way to ensure low latency for
short messages is to keep queue lengths near zero in the net-
work. However, this risks buffer under-runs, where links are
idle even though there is traffic that could use them; this re-
duces throughput for long messages. The only way to keep
links fully utilized in the face of traffic fluctuations is to al-
low buffers to accumulate in the steady state, but this causes
delays for short messages.

Furthermore, it takes about 1 RTT for a sender to find out
about traffic changes, so senders must make decisions based
on out-of-date information. As messages get shorter and net-
works get faster, more and more messages will complete in
less than 1 RTT, which makes the information received by
senders less and less reliable.

Congestion control has been studied extensively, both for
TCP and for other streaming approaches such as RDMA.
These efforts have resulted in considerable improvements, but
it is unlikely that the latency vs. throughput dilemma can be
completely resolved without breaking some of TCP’s funda-
mental assumptions.

3.5 In-order packet delivery
TCP assumes that packets will arrive at a receiver in the same
order they were transmitted by the sender, and it assumes that
out-of-order arrivals indicate packet drops. This severely re-
stricts load balancing, leading to hot spots in both hardware
and software, and consequently high tail latency.

In datacenter networks, the most effective way to perform
load balancing is to perform packet spraying, where each
packet is independently routed through the switching fabric to
balance loads on links. However, packet spraying cannot be
used with TCP since it could change the order in which pack-
ets arrive at their destination. Instead, TCP networks must use
flow-consistent routing, where all of the packets from a given
connection follow the same path through the network fabric.
Flow-consistent routing ensures in-order packet delivery, but
it virtually guarantees that there will be overloaded links in
the network core, even when the overall network load is low.
All that is needed for congestion is for two large flows to hash
to the same intermediate link; this hot spot will persist for the
life of the flows and cause delays for any other messages that
also pass over the affected link.

I hypothesize that flow-consistent routing is responsible for
virtually all of the congestion that occurs in the core of data-
center networks.

In-order packet delivery also causes hot spots in software.
For example, Linux performs load balancing in software by
distributing the handling of incoming packets across multiple
cores; this is essential in order to sustain high packet rates.
Each incoming packet is processed by the kernel on two dif-
ferent cores before reaching the application (which may be on
a third core). In order to ensure in-order packet delivery, all
of the packets for a given TCP connection must pass through

4

the same sequence of cores. This results in uneven core load-
ing when two or more active connections hash to the same
core; again, the hot spot persists as long as the connections
are active. Measurements in [21] indicate that hot spots are
the dominant cause of software-induced tail latency for TCP.

Correction (1/2023): the first paragraph of this subsection
is incorrect. Out-of-order packet arrivals do not necessar-
ily trigger packet retransmissions in TCP. Mechanisms such
as triple-duplicate ACKs and RACK allow TCP to tolerate a
modest degree of packet reordering without retransmissions.
However, I am told by experts that asymmetries in datacenter
networks can cause significant packet reorderings that exceed
TCP’s tolerance. In addition, performance optimizations in
NICs and the Linux networking stack, such as LRO and GRO,
become ineffective with even modest reorderings, resulting in
significant performance degradation. Thus, both network-
ing hardware and Linux kernel software attempt to preserve
packet ordering, resulting in the problems described above.

4 TCP is beyond repair
One possible response to the problems with TCP is an incre-
mental approach, gradually fixing the issues while maintain-
ing application compatibility. There have already been nu-
merous such attempts, and they have made some progress.
However, this approach is unlikely to succeed: there are sim-
ply too many problems, and they are too deeply embedded in
the design of TCP.

As one example, consider congestion control. This aspect
of TCP has probably been studied more than any other in re-
cent years, and a number of novel and clever techniques have
been devised. One of the earliest was DCTCP [2]; it pro-
vides significant improvements in tail latency (see Figure 1)
and has been widely implemented. More recent proposals
such as HPCC [14] provide impressive additional improve-
ments (they are not included in Figure 1 because they don’t
have Linux kernel implementations). However, all of these
schemes are constrained by fundamental aspects of TCP, such
as its weak congestion signal based on buffer occupancy, its
inability to use switch priority queues, and its in-order de-
livery requirement. Significant additional improvements will
be possible only by breaking some of TCP’s fundamental as-
sumptions. The Homa curve in Figure 1 shows that consider-
able improvement is possible (though not shown in Figure 1,
Homa also delivers better tail latency than newer proposals
such as HPCC).

One of the problems with an incremental approach is that
TCP has many problems and they are interrelated. For ex-
ample, the lack of message boundaries makes it hard to im-
plement SRPT and limits the amount of information available
for congestion control. Thus, many different parts of TCP will
have to be changed before improvements will be visible.

In addition, the problems with TCP involve not just its im-
plementation, but also its API. In order to maximize perfor-
mance in the datacenter, TCP would have to switch from a
model based on streams and connections to one based on mes-

sages. This is a fundamental change that will affect applica-
tions. Once applications are impacted, we might as well fix
all of the other TCP problems at the same time.

The bottom line is that there are no parts of TCP worth
keeping. We need a replacement protocol that is different
from TCP in every significant aspect. Fortunately, such a pro-
tocol already exists: Homa [19, 21]. Homa provides an exis-
tence proof that all of TCP’s problems are in fact solvable.

5 Homa
Homa represents a clean-slate redesign of network transport
for the datacenter. Its design was informed by the prob-
lems with TCP as well as experience using Infiniband [23]
and RDMA to implement large-scale datacenter applications.
Homa’s design differs from TCP in every one of the di-
mensions discussed in Section 3. This section summarizes
Homa’s features briefly; for details, see [19] and [21].

5.1 Messages
Homa is message-based. More precisely, it implements re-
mote procedure calls (RPCs), where a client sends a request
message to a server and eventually receives a response mes-
sage. The primary advantage of messages is that they expose
dispatchable units to the transport layer. This enables more ef-
ficient load balancing: multiple threads can safely read from
a single socket, and a NIC-based implementation of the pro-
tocol could dispatch messages directly to a pool of worker
threads via kernel bypass. Having explicit message bound-
aries also enables run-to-completion scheduling in the trans-
port, such as SRPT, and provides a more powerful congestion
signal (see below).

Messages have one disadvantage relative to streams: it is
difficult to pipeline the implementation of a single large mes-
sage. For example, an application cannot receive any part of
a message until the entire message has been received. Thus
a single large message will have higher latency than the same
data sent via a stream. However, large data transfers can be
handled by sending multiple messages in parallel, which per-
mits pipelining between messages.

5.2 No connections
Homa is connectionless. There is no connection setup over-
head, and an application can use a single socket to manage
any number of concurrent RPCs with any number of peers.
Each RPC is handled independently: there are no ordering
guarantees between concurrent RPCs.

The state maintained by Homa falls into three major cate-
gories:

• Sockets: Homa’s state per socket is roughly equivalent
to that for TCP, but Homa applications can get by with
a single socket, whereas TCP applications require one
socket per peer.

• RPCs: Homa keeps about 300 bytes of state for each ac-
tive RPC. This state is discarded once the RPC has com-
pleted, so the total amount of state is proportional to the
number of active RPCs, not the total number of peers.

5

• Peers: each Homa host keeps about 200 bytes of state for
each other host, most of which is IP-level routing infor-
mation. This is much smaller than the 2000 bytes of state
that TCP maintains per connection.

In spite of its lack of connections, Homa ensures end-to-
end reliability for RPCs (or reports errors after unrecoverable
network or host failures). There is no need for applications to
maintain additional timeouts. Mechanisms such as flow con-
trol, retry, and congestion control are implemented using per-
RPC state; one way of thinking about Homa is that it imple-
ments a short-lived and lightweight connection for each RPC.

5.3 SRPT
Homa implements an SRPT scheduling policy in order to
favor shorter messages. It uses several techniques for this,
of which the most notable is that it takes advantage of the
priority queues provided by modern switches. This allows
higher-priority (shorter) messages to bypass packets queued
for lower-priority (longer) messages. As can be seen in Fig-
ure 1 this results in considerable improvements in tail latency
compared to either TCP or DCTCP. Messages of all lengths
benefit from SRPT: even the longest messages have signifi-
cantly lower latency under Homa than under TCP or DCTCP.

One potential concern about SRPT is that the longest mes-
sages might suffer disproportionately high tail latencies or
even starve. This problem has not yet been observed in prac-
tice and is difficult to produce even with an adversarial ap-
proach. Nonetheless, the Linux implementation of Homa con-
tains an additional safeguard: a small fraction of each host’s
bandwidth (typically 5–10%) is dedicated to the oldest mes-
sage rather than the smallest. This eliminates starvation and
improves tail latency for long messages in pathological cases,
while still using run-to-completion.

Homa’s use of priority queues eliminates the “pick your
poison” tradeoff between latency and bandwidth discussed in
Section 3.4. Homa intentionally allows some buffers from
longer messages to accumulate in low-priority queues (over-
commitment); these ensure high link utilization. Short mes-
sages still achieve low latency since they use higher priority
queues.

5.4 Receiver-driven congestion control
Homa manages congestion from the receiver, not the sender.
This makes sense because the primary location for congestion
is the receiver’s downlink (Homa eliminates core congestion
as discussed in Section 5.5 below). The receiver has knowl-
edge of all its incoming messages, so it is in a better position to
manage this congestion. When a sender transmits a message,
it can send a few unscheduled packets unilaterally (enough to
cover the round-trip time), but the remaining scheduled pack-
ets may only be sent in response to grants from the receiver.
With this mechanism, the receiver can limit congestion at its
downlink, and it also uses the grants to prioritize shorter mes-
sages.

Messages provide a powerful congestion signal that is not
available in stream-based protocols. Although message arrival

is unpredictable, once the first packet of the message has been
seen, the total length of the message is known. This enables
proactive approaches to congestion control, such as throttling
other messages during this message’s lifetime and ramping
them up again when this message completes. In contrast, TCP
can only be reactive, based on buffer occupancy.

Incast can occur if many senders simultaneously send un-
scheduled packets, but Homa’s RPC orientation enables a
simple mitigation; see the Homa papers for details.

5.5 Out-of-order packets
A key design feature of Homa is that it can tolerate out-of-
order packet arrivals. This provides considerably more flexi-
bility for load balancing. For example, packet-level spraying
can be used to distribute packets across the network fabric in-
stead of flow-consistent routing as in TCP. If Homa becomes
widely deployed, I hypothesize that core congestion will cease
to exist as a significant networking problem, as long as the
core is not systemically overloaded. Homa’s tolerance for out-
of-order arrivals also allows more flexibility for load balanc-
ing in software.

5.6 Related work
Several recent papers have claimed to identify problems with
Homa and/or to improve upon its performance, including Ae-
olus [7], PowerTCP [1], and DcPIM [4]. However, all of these
papers have significant flaws, such as not implementing Homa
correctly or measuring it under artificial restrictions (e.g. Ae-
olus uses statically buffer allocation in switches). For a more
detailed discussion of these papers, see the Homa Wiki [8].
The Homa Wiki also contains a variety of other information
about Homa, and will be updated in the future to include new
information and related work.

6 What about Infiniband?
There are other TCP alternatives besides Homa, but none that
appear to meet the needs of datacenter computing. One of
the best known alternatives is Infiniband [23], which has been
widely adopted in the high-performance computing (HPC)
arena, and has recently seen increasing use in datacenters via
RoCE, which layers the RDMA API over Ethernet.

The primary advantage of RDMA is that it provides very
low latency on unloaded networks. It achieves this by offload-
ing the transport protocol implementation to the NIC and al-
lowing user processes to bypass the kernel and communicate
directly with the NIC. Infiniband/RDMA NICs have a well-
deserved reputation for very high performance.

However, RDMA shares most of TCP’s problems. It is
based on streams and connections (RDMA also offers unre-
liable datagrams, but these have problems similar to those for
UDP). It requires in-order packet delivery. Its congestion con-
trol mechanism, based on priority flow control (PFC), is dif-
ferent from TCP’s, but it is also problematic. And, it does not
implement an SRPT priority mechanism.

RDMA has the additional disadvantage that the NIC-based
protocol implementations are proprietary, so it is difficult to

6

find out exactly how they behave and to track down problems.
As one example, the RAMCloud project found several perfor-
mance anomalies with Infiniband, especially at high load; in
most cases it was not possible to track them down because of
the closed nature of the implementation.

Future transport implementations should adopt Infiniband’s
kernel bypass approach, but it seems unlikely that Infiniband
itself can solve all of TCP’s problems.

7 Getting there from here
It is hard to imagine a computing standard more entrenched
than TCP, so replacing it will be difficult. To make matters
worse, Homa (or any protocol that fixes all of TCP’s prob-
lems) requires API changes, meaning that application code
will have to be modified. Given the enormous number of ap-
plications that code directly to the sockets interface, the task
of modifying them all seems insurmountable, at least for the
near future.

Fortunately, it is not necessary to replace TCP for all appli-
cations. The applications with the greatest need for a new
transport protocol are newer large-scale datacenter applica-
tions. Most of these applications do not code to the sockets
API; instead, they are layered above one of a relatively small
number of RPC frameworks such as gRPC [6] or Apache
Thrift [24]. The easiest way to bring a new protocol into
widespread use is to integrate it with the major RPC frame-
works. This is a fairly manageable task, and once it is done,
applications using the frameworks can switch to Homa with
little or no work.

Work on framework integration has already begun: a gRPC
driver for Homa now exists for C++ applications, and Java
support is underway. This work is based on the Linux kernel
implementation of Homa [21].

8 Conclusion
TCP is the wrong protocol for datacenter computing. Every
aspect of TCP’s design is wrong: there is no part worth keep-
ing. If we want to eliminate the “datacenter tax”, we must
find a way to move most datacenter traffic to a radically dif-
ferent protocol. Homa offers an alternative that appears to
solve all of TCP’s problems. The best way to bring Homa into
widespread usage is integrate it with the RPC frameworks that
underly most large-scale datacenter applications.

References
[1] V. Addanki, O. Michel, and S. Schmid. PowerTCP: Pushing the

Performance Limits of Datacenter Networks. In 19th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 22), pages 51–70, Renton, WA, Apr. 2022. USENIX
Association.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center TCP
(DCTCP). In Proceedings of the ACM SIGCOMM 2010 Con-
ference, SIGCOMM ’10, pages 63–74, New York, NY, USA,
2010. ACM.

[3] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan. At-
tack of the Killer Microseconds. Commun. ACM, 60(4):48–54,
March 2017.

[4] Q. Cai, M. T. Arashloo, and R. Agarwal. DcPIM: Near-Optimal
Proactive Datacenter Transport. In Proceedings of the ACM
SIGCOMM 2022 Conference, SIGCOMM ’22, page 53–65,
New York, NY, USA, 2022. Association for Computing Ma-
chinery.

[5] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson.
FaRM: Fast Remote Memory. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14),
pages 401–414, Seattle, WA, Apr. 2014. USENIX Association.

[6] Google. gRPC: A High Performance, Open-Source Universal
RPC Framework. http://www.grpc.io.

[7] S. Hai, W. Bai, G. Zeng, Z. Wang, B. Qiao, K. Chen, K. Tan,
and Y. Wang. Aeolus: A Building Block for Proactive Trans-
port in Datacenters. In Proceedings of the ACM Special In-
terest Group on Data Communication, SIGCOMM ’20, page
422–434, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[8] Homa Wiki. https://homa-transport.atlassian.net/

wiki/spaces/HOMA/overview.

[9] Information Sciences Institute. RFC 793: Transmission control
protocol, 1981. Edited by Jon Postel. Available at https://
www.ietf.org/rfc/rfc793.txt.

[10] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA
Efficiently for Key-Value Services. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’14, page
295–306, New York, NY, USA, 2014. Association for Com-
puting Machinery.

[11] A. Kalia, M. Kaminsky, and D. G. Andersen. Design Guide-
lines for High Performance RDMA Systems. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16), pages 437–
450, Denver, CO, June 2016. USENIX Association.

[12] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks. Profiling a Warehouse-
Scale Computer. In Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture, ISCA ’15, page
158–169, New York, NY, USA, 2015. Association for Comput-
ing Machinery.

[13] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu,
B. Montazeri, Y. Wang, K. Springborn, C. Alfeld, M. Ryan,
D. Wetherall, and A. Vahdat. Swift: Delay is Simple and Effec-
tive for Congestion Control in the Datacenter. In Proceedings
of the ACM Special Interest Group on Data Communication,
SIGCOMM ’20, pages 514–528, New York, NY, USA, 2020.
Association for Computing Machinery.

[14] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu. HPCC: High
Precision Congestion Control. In Proceedings of the ACM Spe-
cial Interest Group on Data Communication, SIGCOMM ’19,
pages 44—-58, New York, NY, USA, 2019. Association for
Computing Machinery.

[15] Y. Li, S. J. Park, and J. Ousterhout. MilliSort and MilliQuery:
Large-Scale Data-Intensive Computing in Milliseconds. In
18th USENIX Symposium on Networked Systems Design and

7

http://www.grpc.io
https://homa-transport.atlassian.net/wiki/spaces/HOMA/overview
https://homa-transport.atlassian.net/wiki/spaces/HOMA/overview
https://www.ietf.org/rfc/rfc793.txt
https://www.ietf.org/rfc/rfc793.txt

Implementation (NSDI 21), pages 593–611. USENIX Associa-
tion, Apr. 2021.

[16] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans, S. Grib-
ble, N. Kidd, R. Kononov, G. Kumar, C. Mauer, E. Mu-
sick, L. Olson, E. Rubow, M. Ryan, K. Springborn, P. Turner,
V. Valancius, X. Wang, and A. Vahdat. Snap: A Microker-
nel Approach to Host Networking. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, SOSP ’19,
pages 399–413, New York, NY, USA, 2019. Association for
Computing Machinery.

[17] memcached: a Distributed Memory Object Caching System.
http://www.memcached.org/, Jan. 2011.

[18] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats.
TIMELY: RTT-based Congestion Control for the Datacenter.
In Proceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication, SIGCOMM ’15, pages
537–550, New York, NY, USA, 2015. ACM.

[19] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. Homa: A
Receiver-Driven Low-Latency Transport Protocol Using Net-
work Priorities. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, SIG-
COMM ’18, pages 221—-235, New York, NY, USA, 2018.
Association for Computing Machinery.

[20] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling Mem-
cache at Facebook. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages 385–
398, Lombard, IL, 2013. USENIX.

[21] J. Ousterhout. A Linux Kernel Implementation of the Homa
Transport Protocol. In 2021 USENIX Annual Technical Confer-
ence (USENIX ATC 21), pages 99–115. USENIX Association,
July 2021.

[22] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee,
B. Montazeri, D. Ongaro, S. J. Park, H. Qin, M. Rosenblum,
et al. The RAMCloud Storage System. ACM Transactions on
Computer Systems (TOCS), 33(3):7, 2015.

[23] T. Shanley. Infiniband Network Architecture. Addison-Wesley
Professional, 2003.

[24] Apache Thrift. https://thrift.apache.org.

[25] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron,
J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang. Conges-
tion Control for Large-Scale RDMA Deployments. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, pages 523–536, New
York, NY, USA, 2015. ACM.

8

http://www.memcached.org/
https://thrift.apache.org

	1 Introduction
	2 Requirements
	3 Everything about TCP is wrong
	3.1 Stream orientation
	3.2 Connection orientation
	3.3 Bandwidth sharing
	3.4 Sender-driven congestion control
	3.5 In-order packet delivery

	4 TCP is beyond repair
	5 Homa
	5.1 Messages
	5.2 No connections
	5.3 SRPT
	5.4 Receiver-driven congestion control
	5.5 Out-of-order packets
	5.6 Related work

	6 What about Infiniband?
	7 Getting there from here
	8 Conclusion

