
This report examines the architectural differences between DynamoDB's single table design

pattern and the multi-collection/multi-table approaches used by other NoSQL databases like

MongoDB and Cassandra. While DynamoDB strongly favors single table design due to its unique

constraints, other NoSQL databases provide native support for relationships and complex

queries that eliminate the need for such workarounds.

Single table design is a data modeling pattern where all entity types are stored within a single

DynamoDB table, using composite keys to organize and retrieve related data. This approach

emerged as a response to DynamoDB's specific architectural limitations rather than being a

universal NoSQL best practice.

Limited Query Capabilities

400 KB Item Size Limit

DynamoDB restricts each item to a maximum of 400 KB, preventing the storage of rich nested

documents that other NoSQL databases support. This constraint forces data flattening and

denormalization strategies.

GSI Operational Costs

Each Global Secondary Index doubles storage costs and requires separate provisioned capacity,

making multi-table designs with extensive indexing economically prohibitive.

NoSQL Database Design Patterns: DynamoDB
Single Table Design vs. Multi-Collection
Approaches

Executive Summary

Introduction

[1] [2]

DynamoDB's Architectural Constraints

Core Limitations Driving Single Table Design

No JOIN operations between tables

Only key-based queries (partition key + optional sort key)

No cross-table transactions without complex workarounds

Limited secondary indexing (maximum 20 GSIs per table) [3]

[4]

[3]

Embedded Document Strategy

MongoDB supports documents up to 16 MB, enabling rich nested structures:

{
 "_id": "order123",
 "customer": {
 "name": "John Doe",
 "address": { "street": "123 Main St", "city": "Boston" }
 },
 "items": [
 { "product": "Laptop", "quantity": 2, "reviews": [...] }
]
}

Reference-Based Relationships

For larger datasets, MongoDB uses references between collections with application-level joins:

// Two-step process
const post = db.posts.findOne({"_id": ObjectId("...")});
const author = db.users.findOne({"_id": post.author_id});

Advanced Query Capabilities

MongoDB provides aggregation pipelines with $lookup operations for complex cross-collection

queries.

Multiple Specialized Tables

Cassandra creates different tables optimized for specific query patterns:

-- Table for user's order history
CREATE TABLE orders_by_user (
 user_id UUID,
 order_date timestamp,
 order_id UUID,
 total decimal,
 PRIMARY KEY (user_id, order_date)
);

-- Table for order details
CREATE TABLE order_details (
 order_id UUID PRIMARY KEY,
 customer_info text,
 items list<frozen<item>>
);

Alternative NoSQL Database Approaches

MongoDB: Flexible Document Modeling

[5]

[6]

[7]

Cassandra: Query-Driven Denormalization

[8] [9]

Important Distinction: DynamoDB does not technically force single table design. Multi-table

architectures are possible using:

However, this approach incurs significant penalties:

These limitations make single table design the recommended pattern rather than an absolute

requirement.

The 400 KB item limit significantly influences design decisions:

Forces Data Flattening

Unlike MongoDB's 16 MB documents, DynamoDB cannot store complex nested objects,

requiring:

Workarounds for Large Objects

Three primary strategies for exceeding the 400 KB limit:

// All entities in one table with composite keys
{
 "PK": "USER#john123",
 "SK": "PROFILE",
 "name": "John Doe",

Clarification: Choice vs. Requirement

Primary keys from one table as foreign keys in another

GSIs to support foreign key queries

Application-level referential integrity

No native foreign key constraints [10]

GSI proliferation and associated costs

Complex transaction management

Multiple queries for related data retrieval

The 400 KB Constraint Impact

Flattened attribute naming (customer_name vs. nested customer.name)

Strategic data placement across multiple items

Careful consideration of what to include in each item [4]

1. S3 Storage with DynamoDB Pointers: Store large objects in S3, keep metadata in

DynamoDB [4]

2. Item Chunking: Split large objects across multiple items using sort keys [11]

3. Compression: Use GZIP or similar algorithms to reduce item size [12]

Comparative Analysis: E-Commerce Example

DynamoDB Single Table Approach

 "email": "john@example.com"
}
{
 "PK": "USER#john123",
 "SK": "ORDER#2024-001",
 "order_id": "2024-001",
 "total": 299.99
}

// Separate collections with natural relationships
// Users collection
{ "_id": "john123", "name": "John Doe", "email": "john@example.com" }

// Orders collection
{ "_id": "2024-001", "user_id": "john123", "total": 299.99 }

// Complex aggregation queries supported natively
db.users.aggregate([
 { $match: { "_id": "john123" }},
 { $lookup: { from: "orders", localField: "_id", foreignField: "user_id", as: "orders" }
])

-- Multiple optimized tables
CREATE TABLE users (user_id UUID PRIMARY KEY, name text, email text);
CREATE TABLE orders_by_user (
 user_id UUID,
 order_date timestamp,
 order_id UUID,
 PRIMARY KEY (user_id, order_date)
);

MongoDB Multi-Collection Approach

Cassandra Specialized Tables

Decision Framework

When Single Table Design is Optimal

Clear, stable access patterns

Performance-critical applications requiring minimal latency

Cost-sensitive environments where GSI proliferation is prohibitive

Simple to moderate complexity data relationships

While DynamoDB's single table design pattern has proven effective for high-scale, performance-

critical applications, it represents a database-specific solution to architectural constraints rather

than a universal NoSQL principle. Other NoSQL databases like MongoDB and Cassandra

provide native capabilities for handling relationships and complex queries that reduce the need

for such design patterns. The choice between approaches should be based on specific

application requirements, data complexity, and the capabilities of the chosen database system.

This report synthesizes analysis of DynamoDB documentation, NoSQL design patterns, and

comparative database capabilities as of September 2025.

⁂

When Multi-Table Approaches Excel

Evolving applications with unclear access patterns

Complex many-to-many relationships

Rich nested data structures

Strong consistency requirements across entities

Analytics-heavy workloads

Key Takeaways

1. Single table design is uniquely advantageous for DynamoDB due to its architectural

constraints, not a universal NoSQL best practice.

2. Other NoSQL databases provide sophisticated query engines that eliminate the need for

complex single-table workarounds.

3. The 400 KB item limit compounds DynamoDB's design constraints, preventing rich

document structures possible in other systems.

4. Design choice depends on database capabilities: DynamoDB's limitations make single

table design often optimal, while other NoSQL databases offer more flexible alternatives.

5. Understanding the trade-offs is crucial: Performance benefits versus operational

complexity, cost implications versus query flexibility.

Conclusion

1. https://aws.amazon.com/blogs/compute/creating-a-single-table-design-with-amazon-dynamodb/

2. https://alexdebrie.com/posts/dynamodb-single-table/

3. https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-indexes-general.html

4. https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-use-s3-too.html

5. https://www.geeksforgeeks.org/mongodb-data-modelling/

6. https://www.mongodb.com/docs/manual/applications/data-models-relationships/

7. https://www.mongodb.com/resources/basics/databases/data-modeling

8. https://www.datastax.com/blog/basic-rules-cassandra-data-modeling

https://aws.amazon.com/blogs/compute/creating-a-single-table-design-with-amazon-dynamodb/
https://alexdebrie.com/posts/dynamodb-single-table/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-indexes-general.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-use-s3-too.html
https://www.geeksforgeeks.org/mongodb-data-modelling/
https://www.mongodb.com/docs/manual/applications/data-models-relationships/
https://www.mongodb.com/resources/basics/databases/data-modeling
https://www.datastax.com/blog/basic-rules-cassandra-data-modeling

9. https://www.instaclustr.com/blog/cassandra-data-modeling/

10. https://advancedweb.hu/foreign-key-constraints-in-dynamodb/

11. https://aws.amazon.com/blogs/database/large-object-storage-strategies-for-amazon-dynamodb/

12. https://reintech.io/blog/handling-large-items-attributes-dynamodb

13. https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-practices.html

14. https://www.reddit.com/r/aws/comments/xu64gd/dynamodb_single_table_deign_simple_guide_to/

15. https://www.simform.com/blog/dynamodb-best-practices/

16. https://www.linkedin.com/pulse/aws-dynamodb-part-2-design-patterns-best-practices-rasel

17. https://www.youtube.com/watch?v=lWCch8GEK4E

18. https://madhead.me/posts/std/

19. https://emshea.com/post/part-1-dynamodb-single-table-design

https://www.instaclustr.com/blog/cassandra-data-modeling/
https://advancedweb.hu/foreign-key-constraints-in-dynamodb/
https://aws.amazon.com/blogs/database/large-object-storage-strategies-for-amazon-dynamodb/
https://reintech.io/blog/handling-large-items-attributes-dynamodb
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-practices.html
https://www.reddit.com/r/aws/comments/xu64gd/dynamodb_single_table_deign_simple_guide_to/
https://www.simform.com/blog/dynamodb-best-practices/
https://www.linkedin.com/pulse/aws-dynamodb-part-2-design-patterns-best-practices-rasel
https://www.youtube.com/watch?v=lWCch8GEK4E
https://madhead.me/posts/std/
https://emshea.com/post/part-1-dynamodb-single-table-design

